Please rotate your device to landscape mode for a better experience.
Login

Butter Knives
GP: 34 | W: 16 | L: 14 | OTL: 4 | P: 36
GF: 165 | GA: 172 | PP%: 17.57% | PK%: 69.15%
GM : Liam Silva Vail | Morale : 47 | Team Overall : 57
Next Games #397 vs Lynx

Game Center
Butter Knives
16-14-4, 36pts
3
FINAL
5 Wombats
14-11-8, 36pts
Team Stats
OTL1StreakW1
10-5-3Home Record7-8-3
6-9-1Home Record7-3-5
3-4-3Last 10 Games3-5-2
4.85Goals Per Game3.64
5.06Goals Against Per Game3.82
17.57%Power Play Percentage20.24%
69.15%Penalty Kill Percentage90.57%
Ice Bats
12-16-7, 31pts
7
FINAL
6 Butter Knives
16-14-4, 36pts
Team Stats
OTW1StreakOTL1
5-10-2Home Record10-5-3
7-6-5Home Record6-9-1
3-6-1Last 10 Games3-4-3
3.91Goals Per Game4.85
4.86Goals Against Per Game5.06
18.67%Power Play Percentage17.57%
80.00%Penalty Kill Percentage69.15%
Lynx
22-13-0, 44pts
Day 79
Butter Knives
16-14-4, 36pts
Team Stats
L1StreakOTL1
11-7-0Home Record10-5-3
11-6-0Away Record6-9-1
7-3-0Last 10 Games3-4-3
4.29Goals Per Game4.85
3.40Goals Against Per Game4.85
28.05%Power Play Percentage17.57%
89.47%Penalty Kill Percentage69.15%
Butter Knives
16-14-4, 36pts
Day 81
Aces
22-11-3, 47pts
Team Stats
OTL1StreakW1
10-5-3Home Record11-6-0
6-9-1Away Record11-5-3
3-4-3Last 10 Games7-2-1
4.85Goals Per Game3.47
5.06Goals Against Per Game3.47
17.57%Power Play Percentage23.94%
69.15%Penalty Kill Percentage86.05%
Lynx
22-13-0, 44pts
Day 84
Butter Knives
16-14-4, 36pts
Team Stats
L1StreakOTL1
11-7-0Home Record10-5-3
11-6-0Away Record6-9-1
7-3-0Last 10 Games3-4-3
4.29Goals Per Game4.85
3.40Goals Against Per Game4.85
28.05%Power Play Percentage17.57%
89.47%Penalty Kill Percentage69.15%
Team Leaders

Team Stats
Goals For
165
4.85 GFG
Shots For
1537
45.21 Avg
Power Play Percentage
17.6%
13 GF
Offensive Zone Start
39.4%
Goals Against
172
5.06 GAA
Shots Against
1403
41.26 Avg
Penalty Kill Percentage
69.1%%
29 GA
Defensive Zone Start
39.7%
Team Info

General ManagerLiam Silva Vail
CoachBill Butters
DivisionAtlantic
ConferenceEastern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance0
Season Tickets300


Roster Info

Pro Team19
Farm Team19
Contract Limit38 / 50
Prospects47


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Luke KuninX100.00816573667075866863606270506566058640281500,000$
2Isac LundestromX100.00645592666873896669625078506267058630263500,000$
3Robby FabbriX100.00725877676578666860646667516868058630291500,000$
4Gage Goncalves (R)X100.00715687686572756850656162655961058620242500,000$
5Mark KastelicX100.00887072668267746671625463506464058620264500,000$
6Mathieu JosephX100.007756846666707466646352685267670586202811,000,000$
7Jesse PuljujarviX100.00805883657867596850625959506464058610272500,000$
8Tanner JeannotX100.008669766479687962506058615066650586102812,000,000$
9Ryan LombergX100.00736986666463886850615061506967058600312500,000$
10James MalatestaX100.00543589576850515050505050506161058510222500,000$
11Matthew WoodX100.00504083577550525050505050505155058510203500,000$
12Ryan WintertonX100.00555590576251525050505050505657058510222500,000$
13Albert Johansson (R)X100.00695783625870776450565068556062058610243500,000$
Scratches
1Angus CrookshankX100.00545089576450515050505050506262020510262500,000$
2Rutger McGroarty (R)X100.00565089507356535250505050505357020510213500,000$
3Gabe PerreaultX100.00503589576250535050505050505154020500203500,000$
TEAM AVERAGE100.0068558462696367605557546051616205158
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Erik Portillo (R)100.0060606381545050505050506060067560253682,000$
2Sebastian Cossa (R)100.0050605984525050505050725454067540233700,000$
Scratches
1Drew Commesso (R)100.0050615969525050505050505656033530233750,000$
TEAM AVERAGE100.005360607853505050505057575705654
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bill Butters9980808071751USA745500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Albert JohanssonButter Knives (BUF)D242001-01-04SWEYes168 Lbs6 ft0NoNoFree AgentNoNo32025-08-03FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Angus CrookshankButter Knives (BUF)LW261999-10-02CANNo183 Lbs5 ft10NoNoFree AgentNoNo22025-07-24FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Drew CommessoButter Knives (BUF)G232002-07-19USAYes180 Lbs6 ft2NoNoFree AgentNoNo32025-07-31FalseFalsePro & Farm750,000$75,000$42,917$No750,000$750,000$-------750,000$750,000$-------NoNo-------Link / NHL Link
Erik PortilloButter Knives (BUF)G252000-09-03SWEYes218 Lbs6 ft6NoNoFree AgentNoNo32025-07-31FalseFalsePro & Farm682,000$68,200$39,026$No682,000$682,000$-------682,000$682,000$-------NoNo-------Link / NHL Link
Gabe PerreaultButter Knives (BUF)RW202005-05-07CANNo178 Lbs5 ft11NoNoFree AgentNoNo32025-07-31FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Gage GoncalvesButter Knives (BUF)C242001-01-16CANYes184 Lbs6 ft1NoNoFree AgentNoNo22025-08-03FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Isac LundestromButter Knives (BUF)C261999-11-06SWENo191 Lbs6 ft0NoNoFree AgentNoNo32025-07-24FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
James MalatestaButter Knives (BUF)LW222003-05-31CANNo193 Lbs5 ft9NoNoFree AgentNoNo22025-07-24FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Jesse PuljujarviButter Knives (BUF)RW271998-05-07SWENo216 Lbs6 ft4NoNoTrade2024-08-28NoNo2FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Luke KuninButter Knives (BUF)C281997-12-04USANo197 Lbs6 ft0NoNoN/ANoNo12024-08-27FalseFalsePro & Farm500,000$50,000$28,611$No---------------------------Link / NHL Link
Mark KastelicButter Knives (BUF)C261999-03-11USANo227 Lbs6 ft4NoNoFree AgentNoNo42025-07-24FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Link / NHL Link
Mathieu JosephButter Knives (BUF)RW281997-02-09CANNo186 Lbs6 ft1NoNoN/ANoNo12024-08-27FalseFalsePro & Farm1,000,000$100,000$57,222$No---------------------------Link / NHL Link
Matthew WoodButter Knives (BUF)RW202005-02-06CANNo205 Lbs6 ft5NoNoFree AgentNoNo32025-08-03FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Robby FabbriButter Knives (BUF)C291996-01-22CANNo185 Lbs5 ft11NoNoN/ANoNo12024-08-27FalseFalsePro & Farm500,000$50,000$28,611$No---------------------------Link / NHL Link
Rutger McGroartyButter Knives (BUF)RW212004-03-30USAYes203 Lbs6 ft1NoNoFree AgentNoNo32025-08-03FalseFalsePro & Farm500,000$50,000$28,611$No500,000$500,000$-------500,000$500,000$-------NoNo-------Link / NHL Link
Ryan LombergButter Knives (BUF)LW311994-12-09CANNo184 Lbs5 ft9NoNoFree AgentNoNo22025-07-24FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Ryan WintertonButter Knives (BUF)C222003-09-04CANNo175 Lbs6 ft2NoNoFree AgentNoNo22025-07-24FalseFalsePro & Farm500,000$50,000$28,611$No500,000$--------500,000$--------No--------Link / NHL Link
Sebastian CossaButter Knives (BUF)G232002-11-21CANYes229 Lbs6 ft6NoNoFree AgentNoNo32025-07-31FalseFalsePro & Farm700,000$70,000$40,056$No700,000$700,000$-------700,000$700,000$-------NoNo-------Link / NHL Link
Tanner JeannotButter Knives (BUF)LW281997-05-29CANNo220 Lbs6 ft2NoNoTrade2024-08-10NoNo1FalseFalsePro & Farm2,000,000$200,000$114,444$No---------------------------Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1924.89196 Lbs6 ft12.32638,526$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals320010002110111100000093621001000127561.00021416200685044414649252650031932720628225.00%9455.56%0537126742.38%570127844.60%30267444.81%694485943252421192
2Americiens20200000916-71010000037-41010000069-300.0009162500685044410249252650031110411951300.00%8450.00%0537126742.38%570127844.60%30267444.81%694485943252421192
3Barons11000000532110000005320000000000021.000510150068504443249252650031318621200.00%3166.67%0537126742.38%570127844.60%30267444.81%694485943252421192
4Barracuda1000010045-1000000000001000010045-110.50048120068504444249252650031461810255120.00%5260.00%0537126742.38%570127844.60%30267444.81%694485943252421192
5Bruins301000111415-1200000119901010000056-130.500142539006850444137492526500311333916619222.22%8362.50%0537126742.38%570127844.60%30267444.81%694485943252421192
6Canucks220000001596110000007431100000085341.000153045006850444994925265003170281444000%6183.33%1537126742.38%570127844.60%30267444.81%694485943252421192
7Fighting Pandas21100000710-3110000005321010000027-520.5007111800685044467492526500318031123111218.18%6183.33%0537126742.38%570127844.60%30267444.81%694485943252421192
8Griffins1010000078-1000000000001010000078-100.0007142100685044454492526500316323231000%000%0537126742.38%570127844.60%30267444.81%694485943252421192
9Ice Bats32000100201282100010013941100000073450.83320406000685044414849252650031125351082300.00%4175.00%0537126742.38%570127844.60%30267444.81%694485943252421192
10Lynx20200000716-91010000057-21010000029-700.0007132010685044498492526500316618847000%4175.00%0537126742.38%570127844.60%30267444.81%694485943252421192
11Marlies733010002734-7522010002125-42110000069-380.57127538000685044427749252650031265765413322418.18%25772.00%0537126742.38%570127844.60%30267444.81%694485943252421192
12Quacken1010000056-11010000056-10000000000000.000591400685044442492526500314013625400.00%3166.67%0537126742.38%570127844.60%30267444.81%694485943252421192
13Roadrunners3120000079-2000000000003120000079-220.3337142100685044412849252650031872718483133.33%8275.00%0537126742.38%570127844.60%30267444.81%694485943252421192
14Tomahawks1000010078-11000010078-10000000000010.5007142100685044479492526500317820427100.00%10100.00%0537126742.38%570127844.60%30267444.81%694485943252421192
15Wombats1010000035-2000000000001010000035-200.00036900685044448492526500314913917100.00%2150.00%0537126742.38%570127844.60%30267444.81%694485943252421192
16Wranglers11000000761110000007610000000000021.00071421006850444384925265003167154242150.00%20100.00%0537126742.38%570127844.60%30267444.81%694485943252421192
Total34131402311165172-7188501211969061659011006982-13360.5291653184831068504441537492526500311403432212729741317.57%942969.15%1537126742.38%570127844.60%30267444.81%694485943252421192
_Since Last GM Reset34131402311165172-7188501211969061659011006982-13360.5291653184831068504441537492526500311403432212729741317.57%942969.15%1537126742.38%570127844.60%30267444.81%694485943252421192
_Vs Conference237120201195115-201144010115254-21238010004361-18210.45795179274106850444100349252650031883272156450571119.30%702367.14%0537126742.38%570127844.60%30267444.81%694485943252421192
_Vs Division1649010116491-271034010114351-8615000002140-19130.406641181821068504446814925265003165420510932345817.78%511668.63%0537126742.38%570127844.60%30267444.81%694485943252421192

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3436OTL11653184831537140343221272910
All Games
GPWLOTWOTL SOWSOLGFGA
3413142311165172
Home Games
GPWLOTWOTL SOWSOLGFGA
188512119690
Visitor Games
GPWLOTWOTL SOWSOLGFGA
165911006982
Last 10 Games
WLOTWOTL SOWSOL
340201
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
741317.57%942969.15%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
492526500316850444
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
537126742.38%570127844.60%30267444.81%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
694485943252421192


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
13Marlies2Butter Knives4WBoxScore
416Butter Knives5Bruins6LBoxScore
730Marlies5Butter Knives6WXBoxScore
941Butter Knives4Marlies3WBoxScore
1147Butter Knives3Roadrunners2WBoxScore
1360Marlies4Butter Knives5WBoxScore
1674Butter Knives2Fighting Pandas7LBoxScore
1883Marlies7Butter Knives3LBoxScore
2097Americiens7Butter Knives3LBoxScore
22109Butter Knives8Canucks5WBoxScore
25118Marlies7Butter Knives3LBoxScore
28133Butter Knives6Americiens9LBoxScore
30143Lynx7Butter Knives5LBoxScore
33158Bruins5Butter Knives6WXXBoxScore
34165Butter Knives2Lynx9LBoxScore
38179Butter Knives4Admirals3WXBoxScore
39186Canucks4Butter Knives7WBoxScore
43201Fighting Pandas3Butter Knives5WBoxScore
47221Barons3Butter Knives5WBoxScore
49237Butter Knives7Griffins8LBoxScore
50241Butter Knives2Marlies6LBoxScore
51248Wranglers6Butter Knives7WBoxScore
54265Ice Bats2Butter Knives7WBoxScore
57279Butter Knives4Barracuda5LXBoxScore
58286Bruins4Butter Knives3LXXBoxScore
61301Butter Knives7Ice Bats3WBoxScore
62310Admirals3Butter Knives9WBoxScore
65320Butter Knives8Admirals4WBoxScore
67332Quacken6Butter Knives5LBoxScore
69343Butter Knives1Roadrunners3LBoxScore
71353Tomahawks8Butter Knives7LXBoxScore
73364Butter Knives3Roadrunners4LBoxScore
76375Butter Knives3Wombats5LBoxScore
77382Ice Bats7Butter Knives6LXBoxScore
79397Lynx-Butter Knives-
81407Butter Knives-Aces-
84420Lynx-Butter Knives-
86435Butter Knives-Canucks-
88442Fighting Pandas-Butter Knives-
90451Butter Knives-Fighting Pandas-
92459Butter Knives-Quacken-
94467Lions-Butter Knives-
98487Aces-Butter Knives-
99494Butter Knives-Bruins-
102510Firebirds-Butter Knives-
104523Butter Knives-Fighting Pandas-
106531Admirals-Butter Knives-
108545Butter Knives-Canucks-
109552Butter Knives-Americiens-
110556Barracuda-Butter Knives-
113575Bruins-Butter Knives-
115584Butter Knives-Tomahawks-
119598Fighting Pandas-Butter Knives-
121613Butter Knives-Marlies-
122619Griffins-Butter Knives-
125638Butter Knives-Nordiks-
126642Marlies-Butter Knives-
129655Butter Knives-Lions-
131661Butter Knives-Wombats-
132669Roadrunners-Butter Knives-
134682Butter Knives-Bruins-
135690Marlies-Butter Knives-
139706Firebirds-Butter Knives-
143728Roadrunners-Butter Knives-
145733Butter Knives-Wranglers-
147745Butter Knives-Firebirds-
148754Broncos-Butter Knives-
151770Butter Knives-Lions-
152774Wombats-Butter Knives-
153779Butter Knives-Lynx-
156795Butter Knives-Lynx-
157800Americiens-Butter Knives-
160818Americiens-Butter Knives-
161821Butter Knives-Wranglers-
165839Butter Knives-Broncos-
166840Wombats-Butter Knives-
167843Butter Knives-Americiens-
170862Nordiks-Butter Knives-
171866Butter Knives-Barons-
174877Butter Knives-Firebirds-
176890Broncos-Butter Knives-
178901Butter Knives-Broncos-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
23 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
732,886$ 1,213,200$ 1,213,200$ 500,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
1,213,200$ 518,980$ 19 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 103 9,518$ 980,354$




Butter Knives Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Butter Knives Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Butter Knives Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Butter Knives Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Butter Knives Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA