Please rotate your device to landscape mode for a better experience.
Connexion

Fighting Pandas
GP: 67 | W: 38 | L: 20 | OTL: 9 | P: 85
GF: 291 | GA: 235 | PP%: 27.34% | PK%: 78.98%
DG: Hunter Jones | Morale : 58 | Moyenne d’équipe : 60
Prochains matchs #719 vs Firebirds

Centre de jeu
Fighting Pandas
38-20-9, 85pts
2
FINAL
3 Barons
29-29-6, 64pts
Team Stats
L1SéquenceW1
17-9-6Fiche domicile16-12-4
21-11-3Fiche domicile13-17-2
5-3-2Derniers 10 matchs5-5-0
4.34Buts par match 3.75
3.51Buts contre par match 3.81
27.34%Pourcentage en avantage numérique22.86%
78.98%Pourcentage en désavantage numérique77.94%
Americiens
36-23-3, 75pts
6
FINAL
3 Fighting Pandas
38-20-9, 85pts
Team Stats
W3SéquenceL1
18-12-2Fiche domicile17-9-6
18-11-1Fiche domicile21-11-3
6-3-1Derniers 10 matchs5-3-2
5.03Buts par match 4.34
4.69Buts contre par match 3.51
24.44%Pourcentage en avantage numérique27.34%
71.52%Pourcentage en désavantage numérique78.98%
Fighting Pandas
38-20-9, 85pts
Jour 141
Firebirds
22-40-3, 47pts
Statistiques d’équipe
L1SéquenceL1
17-9-6Fiche domicile12-19-1
21-11-3Fiche visiteur10-21-2
5-3-210 derniers matchs1-8-1
4.34Buts par match 3.95
3.51Buts contre par match 3.95
27.34%Pourcentage en avantage numérique23.36%
78.98%Pourcentage en désavantage numérique73.97%
Wombats
34-18-9, 77pts
Jour 143
Fighting Pandas
38-20-9, 85pts
Statistiques d’équipe
OTW1SéquenceL1
17-13-3Fiche domicile17-9-6
17-5-6Fiche visiteur21-11-3
8-1-110 derniers matchs5-3-2
4.41Buts par match 4.34
3.97Buts contre par match 4.34
19.86%Pourcentage en avantage numérique27.34%
84.75%Pourcentage en désavantage numérique78.98%
Aces
43-15-6, 92pts
Jour 146
Fighting Pandas
38-20-9, 85pts
Statistiques d’équipe
SOW2SéquenceL1
23-9-0Fiche domicile17-9-6
20-6-6Fiche visiteur21-11-3
8-1-110 derniers matchs5-3-2
3.77Buts par match 4.34
3.03Buts contre par match 4.34
25.56%Pourcentage en avantage numérique27.34%
79.73%Pourcentage en désavantage numérique78.98%
Meneurs d'équipe
Connor BrownButs
Connor Brown
44
Sean DurziPasses
Sean Durzi
57
Mackie SamoskevichPoints
Mackie Samoskevich
82
Sean DurziPlus/Moins
Sean Durzi
30
Jakub DobesVictoires
Jakub Dobes
37
Cayden PrimeauPourcentage d’arrêts
Cayden Primeau
0.894

Statistiques d’équipe
Buts pour
291
4.34 GFG
Tirs pour
2114
31.55 Avg
Pourcentage en avantage numérique
27.3%
35 GF
Début de zone offensive
38.3%
Buts contre
235
3.51 GAA
Tirs contre
2104
31.40 Avg
Pourcentage en désavantage numérique
79.0%%
33 GA
Début de la zone défensive
39.4%
Informations de l'équipe

Directeur généralHunter Jones
EntraîneurPatrick Lalime
DivisionAtlantic
ConférenceEastern Conference
CapitaineJeff Skinner
Assistant #1Ryker Evans
Assistant #2Keegan Kolesar


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison300


Informations de la formation

Équipe Pro24
Équipe Mineure20
Limite contact 44 / 50
Espoirs28


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Mackie Samoskevich (R)XX99.00765591766573837550707161545760081660232500,000$
2Connor BrownX100.00525494676574927250686976517374083660322500,000$
3Jeff Skinner (C)XX100.006556896971728374576573605178760826603312,000,000$
4Keegan Kolesar (A)X100.00857189687772927550686566506768081660282500,000$
5Radek FaksaX100.00785979657772826679655571617575081640323500,000$
6Cole KoepkeX100.00826292667469836850636365506666080640271500,000$
7Beck MalenstynX99.00836183637567865861605167506768080610282700,000$
8Alexander HoltzX100.00655690677269706150635359535860078590242500,000$
9Samuel Helenius (R)X100.00846990667563676064595559505859078590233750,000$
10Ivan Ivan (R)XX100.00545590656864625955575757505960053570232500,000$
11Ben JonesX100.00747499606661555250534959506463063550264500,000$
12Ryker Evans (A)X100.00785979687175877450705671566064081670242500,000$
13Alec MartinezX99.00645793647374677350656372568783078660382700,000$
14Sean DurziX100.006166776770756274506763745666690836502711,000,000$
15Kaedan KorczakX100.00725696627466646950655170656165058630242500,000$
16Declan ChisholmX100.00635691656871806850605468556465080630262500,000$
Rayé
1Arshdeep BainsX100.00645089576560535250505054506261020530252500,000$
2Matej BlümelX100.00515089577350515050505050506061020510254500,000$
3Georgii MerkulovX100.00503983576150535050505050505860020510251500,000$
4Samuel BolducX100.00503595588261585050504949556163019540252500,000$
5Ryan JohnsonX100.00504740577050545050505050556062020520241500,000$
MOYENNE D’ÉQUIPE99.8667578764716671635360576253656606360
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Jakub Dobes (R)98.0073687079756664686665876164033670243750,000$
2Cayden Primeau100.0050656176615453555050596161073570264500,000$
Rayé
1Devon Levi100.0050646071505050505050505656038530241500,000$
MOYENNE D’ÉQUIPE99.335866647562575658555565596004859
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Patrick Lalime9090957070651CAN515500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mackie SamoskevichFighting Pandas (OTT)C/RW6733498224235751272556316212.94%20147922.08371015960002803146.96%136300101.11220005101
2Connor BrownFighting Pandas (OTT)RW674437812320101062876119015.33%25127719.07591433950001481448.12%13300041.27240001014
3Sean DurziFighting Pandas (OTT)D671557723030109769101337914.85%98157523.52312153197000011741100.00%100000.9101101433
4Jeff SkinnerFighting Pandas (OTT)LW/RW67432669194069792558118116.86%14155223.187293610700041495157.38%12200020.8902000951
5Alec MartinezFighting Pandas (OTT)D63125668292605175103225711.65%82157625.0246102989000199200%000000.8600000145
6Keegan KolesarFighting Pandas (OTT)RW67313364202551291031995615615.58%15118717.7225713460000803149.40%25100001.0813001556
7Ryker EvansFighting Pandas (OTT)D676546022620190596530519.23%92162624.28281020950000103000%000000.7400000138
8Cole KoepkeFighting Pandas (OTT)LW6723345724395112761773911312.99%10129319.3042621950000314148.03%12700000.8800010323
9Radek FaksaFighting Pandas (OTT)C67173754181601171191503811511.33%11118417.682351249000094261.41%122300000.9102000136
10Alexander HoltzFighting Pandas (OTT)RW679243321100445211340917.96%11122718.320335660001270049.18%12200000.5400000030
11Beck MalenstynFighting Pandas (OTT)LW671418322240011681103328413.59%31131719.66000030000273248.43%25400000.4900000123
12Samuel HeleniusFighting Pandas (OTT)C67151732733590112103277514.56%1090313.4800000000014057.24%99400000.7100010004
13Declan ChisholmFighting Pandas (OTT)D6712183033801205556142821.43%99118317.66101517000040200%100000.5100000311
14Leo CarlssonOttawa SenatorsC/RW20916251000286174235912.16%647523.790338380000300152.85%61500001.0501000321
15Kaedan KorczakFighting Pandas (OTT)D322171982005725246198.33%3364620.22112944000065100%000000.5911000102
16Ivan IvanFighting Pandas (OTT)C/LW453811-2002193113169.68%948410.7710110000020047.17%5300000.4500000000
17Samuel BolducFighting Pandas (OTT)D290772401945170%1847016.2300002000029000%000000.3000000010
18Ben JonesFighting Pandas (OTT)C29000-400010010%0642.22000020000100036.36%110000000000000
Statistiques d’équipe totales ou en moyenne102228850879627637230132612232101579148413.71%5841952619.113561962389500009956361453.45%527000160.82616122474548
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jakub DobesFighting Pandas (OTT)67371970.8873.5037564221919400500.6005670310
2Cayden PrimeauFighting Pandas (OTT)40100.8943.5317000109400000045010
Statistiques d’équipe totales ou en moyenne71372070.8873.50392742229203405056745320


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Alec MartinezFighting Pandas (OTT)D381987-07-26USANo210 Lbs6 ft1NoNoTrade2025-03-05NoNo22024-08-21FalseFalsePro & Farm700,000$70,000$16,333$No700,000$--------700,000$--------No--------Lien / Lien NHL
Alexander HoltzFighting Pandas (OTT)RW242002-01-23SWENo198 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Arshdeep BainsFighting Pandas (OTT)LW252001-01-09CANNo184 Lbs6 ft0NoNoFree AgentNoNo22025-07-23FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Beck MalenstynFighting Pandas (OTT)LW281998-02-04CANNo209 Lbs6 ft3NoNoAssign ManuallyNoNo22024-08-21FalseFalsePro & Farm700,000$70,000$16,333$No700,000$--------700,000$--------No--------Lien / Lien NHL
Ben JonesFighting Pandas (OTT)C261999-02-26CANNo187 Lbs6 ft0NoNoFree AgentNoNo42025-07-25FalseFalsePro & Farm500,000$50,000$11,667$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien / Lien NHL
Cayden PrimeauFighting Pandas (OTT)G261999-08-11USANo205 Lbs6 ft3NoNoFree AgentNoNo42025-07-25FalseFalsePro & Farm500,000$50,000$11,667$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien / Lien NHL
Cole KoepkeFighting Pandas (OTT)LW271998-05-17USANo207 Lbs6 ft1NoNoFree AgentNoNo12024-10-11FalseFalsePro & Farm500,000$50,000$11,667$No---------------------------Lien / Lien NHL
Connor BrownFighting Pandas (OTT)RW321994-01-14CANNo184 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Declan ChisholmFighting Pandas (OTT)D262000-01-12CANNo190 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Devon LeviFighting Pandas (OTT)G242001-12-27CANNo192 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$11,667$No---------------------------Lien / Lien NHL
Georgii MerkulovFighting Pandas (OTT)C252000-10-10RUSNo176 Lbs5 ft11NoNoFree AgentNoNo12024-09-09FalseFalsePro & Farm500,000$50,000$11,667$No---------------------------Lien / Lien NHL
Ivan IvanFighting Pandas (OTT)C/LW232002-08-20CZEYes190 Lbs6 ft0NoNoFree AgentNoNo22025-08-09FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Jakub DobesFighting Pandas (OTT)G242001-05-27CZEYes215 Lbs6 ft4NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm750,000$75,000$17,500$No750,000$750,000$-------750,000$750,000$-------NoNo-------Lien / Lien NHL
Jeff SkinnerFighting Pandas (OTT)LW/RW331992-05-16CANNo200 Lbs5 ft11NoNoTrade2024-08-25NoNo1FalseFalsePro & Farm2,000,000$200,000$46,667$No---------------------------Lien / Lien NHL
Kaedan KorczakFighting Pandas (OTT)D242002-01-18CANNo202 Lbs6 ft3NoNoTrade2025-08-04NoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Keegan KolesarFighting Pandas (OTT)RW281997-04-08CANNo216 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Mackie SamoskevichFighting Pandas (OTT)C/RW232002-11-15USAYes180 Lbs5 ft11NoNoTrade2025-08-04NoNo22024-08-10FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Matej BlümelFighting Pandas (OTT)RW252000-05-31CZENo205 Lbs6 ft0NoNoFree AgentNoNo42025-07-25FalseFalsePro & Farm500,000$50,000$11,667$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien
Radek FaksaFighting Pandas (OTT)C321994-01-09CZENo215 Lbs6 ft3NoNoN/ANoNo32024-08-19FalseFalsePro & Farm500,000$50,000$11,667$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Ryan JohnsonFighting Pandas (OTT)D242001-07-24USANo195 Lbs6 ft1NoNoFree AgentNoNo12024-09-09FalseFalsePro & Farm500,000$50,000$11,667$No---------------------------Lien / Lien NHL
Ryker EvansFighting Pandas (OTT)D242001-12-13CANNo195 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Samuel BolducFighting Pandas (OTT)D252000-12-09CANNo224 Lbs6 ft4NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Samuel HeleniusFighting Pandas (OTT)C232002-11-26USAYes201 Lbs6 ft6NoNoFree AgentNoNo32025-08-10FalseFalsePro & Farm750,000$75,000$17,500$No750,000$750,000$-------750,000$750,000$-------NoNo-------Lien / Lien NHL
Sean DurziFighting Pandas (OTT)D271998-10-21CANNo196 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm1,000,000$100,000$23,333$No---------------------------Lien / Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2426.50199 Lbs6 ft12.13620,833$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Jeff SkinnerAlexander Holtz40122
2Cole KoepkeMackie SamoskevichConnor Brown30122
3Beck MalenstynRadek FaksaKeegan Kolesar20122
4Ivan IvanSamuel HeleniusMackie Samoskevich10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Alec MartinezRyker Evans40122
2Sean Durzi30122
3Declan ChisholmAlec Martinez20122
4Ryker EvansSean Durzi10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Jeff SkinnerAlexander Holtz60122
2Cole KoepkeMackie SamoskevichConnor Brown40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Alec MartinezRyker Evans60122
2Sean Durzi40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Jeff Skinner60122
2Mackie SamoskevichCole Koepke40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Alec MartinezRyker Evans60122
2Sean Durzi40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
160122Alec MartinezRyker Evans60122
2Mackie Samoskevich40122Sean Durzi40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Jeff Skinner60122
2Mackie SamoskevichCole Koepke40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Alec MartinezRyker Evans60122
2Sean Durzi40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Jeff SkinnerAlexander HoltzAlec MartinezRyker Evans
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Jeff SkinnerConnor BrownAlec MartinezRyker Evans
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Mackie Samoskevich, Radek Faksa, Cole KoepkeMackie Samoskevich, Radek FaksaMackie Samoskevich
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Sean Durzi, , Declan ChisholmSean DurziSean Durzi,
Tirs de pénalité
, Connor Brown, Keegan Kolesar, Jeff Skinner, Mackie Samoskevich
Gardien
#1 : Jakub Dobes, #2 : Cayden Primeau


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces1000010023-1000000000001000010023-110.500246001089189727697707693331434212150.00%2150.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
2Admirals31200000111011010000034-12110000086220.3331119300010891897836977076933370181449200.00%60100.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
3Americiens623001002530-53210000013121302001001218-650.417254570001089189722469770769333251992013116637.50%10640.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
4Barons30100200812-41000010034-12010010058-320.33381119001089189791697707693335820856300.00%40100.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
5Barracuda210001009811000010067-11100000031230.750917260010891897546977076933347168498337.50%4175.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
6Broncos632000102416811000000615522000101815380.66724406400108918971426977076933315542241174250.00%12375.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
7Bruins43001000181173300000013761000100054181.0001831490110891897122697707693331202552819333.33%14192.86%01126207754.21%1124213652.62%659120754.60%177112791432443858454
8Butter Knives64200000282263210000016115321000001211180.66728487600108918972286977076933322873341179111.11%17382.35%01126207754.21%1124213652.62%659120754.60%177112791432443858454
9Canucks22000000963110000004311100000053241.00091625001089189755697707693334998224125.00%4250.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
10Firebirds2100010011742100010011740000000000030.75011203100108918977069770769333791918513133.33%9188.89%01126207754.21%1124213652.62%659120754.60%177112791432443858454
11Griffins220000001156110000007251100000043141.00011213200108918975869770769333792313373133.33%4175.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
12Ice Bats1100000010280000000000011000000102821.000101828001089189741697707693333057114250.00%110.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
13Lions220000001376110000006331100000074341.00013233600108918978269770769333701819495120.00%7271.43%01126207754.21%1124213652.62%659120754.60%177112791432443858454
14Lynx55000000271413220000001468330000001385101.0002751780010891897156697707693331173018867114.29%7271.43%01126207754.21%1124213652.62%659120754.60%177112791432443858454
15Marlies513000101620-441300000813-51000001087140.40016304601108918971266977076933314136328812433.33%14378.57%01126207754.21%1124213652.62%659120754.60%177112791432443858454
16Nordiks3110000118171201000011214-21100000063330.5001831490010891897131697707693331454119778450.00%60100.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
17Quacken21100000743110000006151010000013-220.50071219001089189747697707693334178446233.33%30100.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
18Roadrunners623000011317-43110000178-13120000069-350.41713223500108918971726977076933316742421211100.00%20575.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
19Tomahawks20100100711-41000010034-11010000047-310.250710170010891897826977076933379208446116.67%40100.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
20Wombats2200000013580000000000022000000135841.000132336001089189749697707693338118842400.00%30100.00%01126207754.21%1124213652.62%659120754.60%177112791432443858454
21Wranglers2110000011831010000036-31100000082620.50011193000108918977469770769333832812462150.00%6183.33%01126207754.21%1124213652.62%659120754.60%177112791432443858454
Total67352001722291235563217900402141113283518110132015012228850.6342915118020210891897211469770769333210459237613391283527.34%1573378.98%01126207754.21%1124213652.62%659120754.60%177112791432443858454
_Since Last GM Reset67352001722291235563217900402141113283518110132015012228850.6342915118020210891897211469770769333210459237613391283527.34%1573378.98%01126207754.21%1124213652.62%659120754.60%177112791432443858454
_Vs Conference452415012211861523422137001019169222311801120958312570.63318632951502108918971372697707693331409402262883771823.38%1122478.57%01126207754.21%1124213652.62%659120754.60%177112791432443858454
_Vs Division26158011101149717151050000064491511530111050482350.673114205319021089189785669770769333857263156503531528.30%621575.81%01126207754.21%1124213652.62%659120754.60%177112791432443858454

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
6785L129151180221142104592376133902
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
6735201722291235
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
321790402141113
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
3518111320150122
Derniers 10 matchs
WLOTWOTL SOWSOL
530200
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
1283527.34%1573378.98%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
6977076933310891897
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1126207754.21%1124213652.62%659120754.60%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
177112791432443858454


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
27Marlies6Fighting Pandas1LSommaire du match
623Fighting Pandas3Americiens4LSommaire du match
834Americiens3Fighting Pandas5WSommaire du match
938Fighting Pandas2Broncos1WSommaire du match
1254Bruins4Fighting Pandas5WSommaire du match
1361Fighting Pandas3Broncos6LSommaire du match
1674Butter Knives2Fighting Pandas7WSommaire du match
1884Fighting Pandas5Bruins4WXSommaire du match
2098Lynx3Fighting Pandas7WSommaire du match
21105Fighting Pandas0Roadrunners3LSommaire du match
25119Roadrunners1Fighting Pandas3WSommaire du match
26125Fighting Pandas2Lynx1WSommaire du match
29138Fighting Pandas3Broncos5LSommaire du match
31147Marlies3Fighting Pandas0LSommaire du match
32154Fighting Pandas8Marlies7WXXSommaire du match
35169Firebirds2Fighting Pandas7WSommaire du match
39184Tomahawks4Fighting Pandas3LXSommaire du match
41193Fighting Pandas3Barracuda1WSommaire du match
43201Fighting Pandas3Butter Knives5LSommaire du match
45212Nordiks7Fighting Pandas6LXXSommaire du match
48226Fighting Pandas7Broncos1WSommaire du match
49234Nordiks7Fighting Pandas6LSommaire du match
51249Barracuda7Fighting Pandas6LXSommaire du match
53260Fighting Pandas7Lions4WSommaire du match
55271Fighting Pandas8Wranglers2WSommaire du match
56278Admirals4Fighting Pandas3LSommaire du match
59293Firebirds5Fighting Pandas4LXSommaire du match
61305Fighting Pandas2Roadrunners4LSommaire du match
63315Wranglers6Fighting Pandas3LSommaire du match
66325Fighting Pandas4Griffins3WSommaire du match
68337Lions3Fighting Pandas6WSommaire du match
70348Fighting Pandas2Aces3LXSommaire du match
72358Fighting Pandas7Wombats1WSommaire du match
74365Marlies4Fighting Pandas3LSommaire du match
76380Barons4Fighting Pandas3LXSommaire du match
78388Fighting Pandas10Ice Bats2WSommaire du match
80401Griffins2Fighting Pandas7WSommaire du match
82412Fighting Pandas4Roadrunners2WSommaire du match
84424Canucks3Fighting Pandas4WSommaire du match
85431Fighting Pandas1Quacken3LSommaire du match
88442Fighting Pandas5Butter Knives3WSommaire du match
90451Butter Knives3Fighting Pandas4WSommaire du match
92461Fighting Pandas3Barons5LSommaire du match
95471Roadrunners3Fighting Pandas2LXXSommaire du match
97482Fighting Pandas6Nordiks3WSommaire du match
99492Fighting Pandas6Admirals3WSommaire du match
100501Bruins0Fighting Pandas3WSommaire du match
102512Fighting Pandas5Lynx3WSommaire du match
104523Butter Knives6Fighting Pandas5LSommaire du match
107535Fighting Pandas2Admirals3LSommaire du match
108544Roadrunners4Fighting Pandas2LSommaire du match
110555Fighting Pandas6Wombats4WSommaire du match
112567Broncos1Fighting Pandas6WSommaire du match
114577Fighting Pandas3Broncos2WXXSommaire du match
116589Bruins3Fighting Pandas5WSommaire du match
119598Fighting Pandas4Butter Knives3WSommaire du match
120608Americiens3Fighting Pandas5WSommaire du match
122621Fighting Pandas6Lynx4WSommaire du match
124632Lynx3Fighting Pandas7WSommaire du match
126643Fighting Pandas6Americiens7LXSommaire du match
128652Marlies0Fighting Pandas4WSommaire du match
130657Fighting Pandas5Canucks3WSommaire du match
132673Quacken1Fighting Pandas6WSommaire du match
133677Fighting Pandas4Tomahawks7LSommaire du match
135686Fighting Pandas3Americiens7LSommaire du match
136692Fighting Pandas2Barons3LXSommaire du match
138703Americiens6Fighting Pandas3LSommaire du match
141719Fighting Pandas-Firebirds-
143725Wombats-Fighting Pandas-
146743Aces-Fighting Pandas-
147748Fighting Pandas-Bruins-
150765Admirals-Fighting Pandas-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
154785Aces-Fighting Pandas-
158804Lynx-Fighting Pandas-
159809Fighting Pandas-Marlies-
162825Wombats-Fighting Pandas-
164834Fighting Pandas-Bruins-
167846Fighting Pandas-Marlies-
168854Fighting Pandas-Firebirds-
169858Ice Bats-Fighting Pandas-
173875Broncos-Fighting Pandas-
177892Ice Bats-Fighting Pandas-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets4020
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
9 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
1,542,362$ 1,490,000$ 1,490,000$ 500,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
1,490,000$ 1,159,040$ 24 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 42 11,056$ 464,352$




Fighting Pandas Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Fighting Pandas Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Fighting Pandas Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Fighting Pandas Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Fighting Pandas Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA