Please rotate your device to landscape mode for a better experience.
Connexion

Wranglers
GP: 63 | W: 36 | L: 21 | OTL: 6 | P: 78
GF: 294 | GA: 273 | PP%: 23.89% | PK%: 75.56%
DG: Dan Villeneuve | Morale : 60 | Moyenne d’équipe : 58
Prochains matchs #707 vs Quacken

Centre de jeu
Wombats
34-18-9, 77pts
5
FINAL
6 Wranglers
36-21-6, 78pts
Team Stats
OTW1SéquenceW1
17-13-3Fiche domicile20-10-2
17-5-6Fiche domicile16-11-4
8-1-1Derniers 10 matchs9-1-0
4.41Buts par match 4.67
3.97Buts contre par match 4.33
19.86%Pourcentage en avantage numérique23.89%
84.75%Pourcentage en désavantage numérique75.56%
Tomahawks
38-23-4, 80pts
3
FINAL
5 Wranglers
36-21-6, 78pts
Team Stats
W1SéquenceW1
22-10-0Fiche domicile20-10-2
16-13-4Fiche domicile16-11-4
4-5-1Derniers 10 matchs9-1-0
5.09Buts par match 4.67
4.68Buts contre par match 4.33
23.68%Pourcentage en avantage numérique23.89%
71.84%Pourcentage en désavantage numérique75.56%
Wranglers
36-21-6, 78pts
Jour 139
Quacken
33-26-3, 69pts
Statistiques d’équipe
W1SéquenceW1
20-10-2Fiche domicile20-12-0
16-11-4Fiche visiteur13-14-3
9-1-010 derniers matchs5-5-0
4.67Buts par match 3.85
4.33Buts contre par match 3.85
23.89%Pourcentage en avantage numérique29.69%
75.56%Pourcentage en désavantage numérique78.76%
Quacken
33-26-3, 69pts
Jour 140
Wranglers
36-21-6, 78pts
Statistiques d’équipe
W1SéquenceW1
20-12-0Fiche domicile20-10-2
13-14-3Fiche visiteur16-11-4
5-5-010 derniers matchs9-1-0
3.85Buts par match 4.67
3.73Buts contre par match 4.67
29.69%Pourcentage en avantage numérique23.89%
78.76%Pourcentage en désavantage numérique75.56%
Butter Knives
27-28-7, 61pts
Jour 145
Wranglers
36-21-6, 78pts
Statistiques d’équipe
L1SéquenceW1
16-13-3Fiche domicile20-10-2
11-15-4Fiche visiteur16-11-4
3-5-210 derniers matchs9-1-0
4.77Buts par match 4.67
5.06Buts contre par match 4.67
21.32%Pourcentage en avantage numérique23.89%
75.80%Pourcentage en désavantage numérique75.56%
Meneurs d'équipe
Aatu RatyButs
Aatu Raty
37
Aatu RatyPasses
Aatu Raty
37
Aatu RatyPoints
Aatu Raty
74
Aatu RatyPlus/Moins
Aatu Raty
22
Justus AnnunenVictoires
Justus Annunen
9
Justus AnnunenPourcentage d’arrêts
Justus Annunen
0.912

Statistiques d’équipe
Buts pour
294
4.67 GFG
Tirs pour
2725
43.25 Avg
Pourcentage en avantage numérique
23.9%
27 GF
Début de zone offensive
40.4%
Buts contre
273
4.33 GAA
Tirs contre
2479
39.35 Avg
Pourcentage en désavantage numérique
75.6%%
44 GA
Début de la zone défensive
39.7%
Informations de l'équipe

Directeur généralDan Villeneuve
EntraîneurLanny McDonald
DivisionCentral
ConférenceWestern Conference
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison300


Informations de la formation

Équipe Pro26
Équipe Mineure21
Limite contact 47 / 50
Espoirs30


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Vladimir TarasenkoX100.006955957178769169506962595074720466503416,000,000$
2Mason AppletonX100.00705686677076836950646269506868073640303500,000$
3Aatu Raty (R)X100.00795879697065597779627158515963085630234500,000$
4Connor ZaryX100.00645685706374887055636663546060047630242500,000$
5Justin BrazeauX100.00785693698270866850636360506463076630283500,000$
6Taylor RaddyshX100.006756886772719068506755605064640716202811,000,000$
7John BeecherX100.00725883637969885870605069506063068610243500,000$
8Anthony DuclairX100.006456886671766661506065595369670726103041,750,000$
9Cam AtkinsonX100.00566491656162616850595659508074070590361500,000$
10Oliver WahlstromX100.00686586667466636550605260686564066590251500,000$
11Riley TufteX100.00504367578350515050505050506563071520273500,000$
12Parker WotherspoonX100.00745790626873736650575470556768077640283500,000$
13Juuso VälimäkiX100.00635883617270666450565071556567074620272500,000$
14Tyler TuckerX100.00777774617365636450555570566265075620253850,000$
15Nikolas Matinpalo (R)X100.00656075617663636350545067556566068610271500,000$
16Tyson BarrieX100.006058846570525560505350606578740705803411,500,000$
17Ben HuttonX100.00525099577550535050505051557472023540321500,000$
Rayé
1Zack Ostapchuk (R)X100.00796581637765715865585063505658047580222500,000$
2Joshua Roy (R)X100.00505590576851535050505050516162020510222500,000$
3Liam FoudyX100.00503589576650505050505050506061020510262500,000$
4Sonny MilanoX100.00503589576950505050505050506765020510291500,000$
5Samuel HonzekX100.00504079576750525050505050505155020500214550,000$
6Kirill KudryavtsevX100.00503594577150525050505050555561019520223675,000$
7Matt KierstedX100.00504553576450525050515050556569020520274550,000$
MOYENNE D’ÉQUIPE100.0063548463726266605357555953656505458
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Justus Annunen (R)100.0070777478687972686954506063061680252500,000$
2Arturs Silovs (R)100.00556562775050505050505058580835502422,500,000$
Rayé
MOYENNE D’ÉQUIPE100.006371687859656159605250596107262
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Lanny McDonald7585958070801CAN725500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Aatu RatyWranglers (WPG)C64373774221401231182497418514.86%10111417.42571218700001404363.57%88400021.33110001051
2Justin BrazeauWranglers (WPG)RW1571118820262068205110.29%728018.67112321000002043.48%2300011.2900000202
3Mason AppletonWranglers (WPG)C1541418010023325515437.27%336724.510223200000333053.52%28400000.9800000010
4Oliver WahlstromWranglers (WPG)RW3331316-6204339709564.29%460718.41134827000090050.00%6200000.5300000021
5Parker WotherspoonWranglers (WPG)D15881616050153181625.81%2135423.662131223000132100%000000.9000000201
6Vladimir TarasenkoWranglers (WPG)RW156915500202440164315.00%038325.580222210000351050.48%10500000.7800000021
7Juuso VälimäkiWranglers (WPG)D151121362079204135.00%2430820.56123420000026010%000000.8400000020
8Anthony DuclairWranglers (WPG)LW1576131207112952324.14%018112.09112522000290062.50%800001.4300000021
9Tyler TuckerWranglers (WPG)D155813414046132241622.73%2030820.55134720000023000%000000.8400000112
10Connor ZaryWranglers (WPG)C15471136013243482711.76%222214.83000000001151256.13%26900000.9900000200
11Ilya MikheyevWinnipeg JetsRW47310820432861525.00%27619.0201145000001040.00%500012.6300000201
12Nikolas MatinpaloWranglers (WPG)D151563155301169916.67%1422815.220000100002000%000000.5300010001
13Taylor RaddyshWranglers (WPG)RW1533636021172882110.71%220913.9401100000000041.67%1200000.5700000000
14Erik GustafssonWinnipeg JetsD8145-62012812498.33%1519023.87101513000016100%000000.5200000001
15Riley TufteWranglers (WPG)LW152358008383725.00%330320.23101119000000042.86%1400000.3300000000
16Cam AtkinsonWranglers (WPG)RW151344001473714.29%1875.8101104000000057.14%1400000.9200000001
17John BeecherWranglers (WPG)C15134-7202438235114.35%520213.53000000000160058.44%24300000.3900000000
18Tyson BarrieWranglers (WPG)D1512324017463816.67%1623515.6900000000010000%000000.2500000000
19Anthony BeauvillierWinnipeg JetsLW31010004518365.56%27525.2900022000160055.56%900000.2600000000
Statistiques d’équipe totales ou en moyenne3221001512515989547939875420756613.26%151573817.8214253974294000628114658.59%193200040.8711010191513
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Justus AnnunenWranglers (WPG)159420.9123.34880404955501200150211
2Arturs SilovsWranglers (WPG)10001.000020000700000015000
Statistiques d’équipe totales ou en moyenne169420.9133.27900404956201201515211


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Aatu RatyWranglers (WPG)C232002-11-14FINYes190 Lbs6 ft2NoNoTrade2026-01-21NoNo42025-07-25FalseFalsePro & Farm500,000$50,000$11,667$No500,000$500,000$500,000$------500,000$500,000$500,000$------NoNoNo------Lien / Lien NHL
Anthony DuclairWranglers (WPG)LW301995-08-26CANNo200 Lbs6 ft0NoNoFree AgentNoNo42025-07-23FalseFalsePro & Farm1,750,000$175,000$40,833$No1,750,000$1,750,000$1,750,000$------1,750,000$1,750,000$1,750,000$------NoNoNo------Lien / Lien NHL
Arturs SilovsWranglers (WPG)G242001-03-22LVAYes203 Lbs6 ft4NoNoTrade2025-06-25NoNo2FalseFalsePro & Farm2,500,000$250,000$58,333$No2,500,000$--------2,500,000$--------No--------Lien / Lien NHL
Ben HuttonWranglers (WPG)D321993-04-20CANNo209 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$11,667$No---------------------------Lien / Lien NHL
Cam AtkinsonWranglers (WPG)RW361989-06-05USANo178 Lbs5 ft8NoNoFree AgentNoNo12024-09-06FalseFalsePro & Farm500,000$50,000$11,667$No---------------------------Lien / Lien NHL
Connor ZaryWranglers (WPG)C242001-09-25CANNo178 Lbs6 ft0NoNoTrade2025-02-01NoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
John BeecherWranglers (WPG)C242001-04-05USANo220 Lbs6 ft3NoNoFree AgentNoNo32024-09-03FalseFalsePro & Farm500,000$50,000$11,667$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Joshua RoyWranglers (WPG)RW222003-08-06CANYes192 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Justin BrazeauWranglers (WPG)RW281998-02-02CANNo227 Lbs6 ft6NoNoFree AgentNoNo32024-09-05FalseFalsePro & Farm500,000$50,000$11,667$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Justus AnnunenWranglers (WPG)G252000-03-11FINYes210 Lbs6 ft4NoNoTrade2025-07-25NoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Juuso VälimäkiWranglers (WPG)D271998-10-06FINNo201 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Kirill KudryavtsevWranglers (WPG)D222004-02-05RUSNo200 Lbs5 ft11NoNoFree AgentNoNo32025-08-09FalseFalsePro & Farm675,000$67,500$15,750$No675,000$675,000$-------675,000$675,000$-------NoNo-------Lien / Lien NHL
Liam FoudyWranglers (WPG)C262000-02-04CANNo186 Lbs6 ft1NoNoFree AgentNoNo22024-09-08FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Mason AppletonWranglers (WPG)C301996-01-15USANo194 Lbs6 ft2NoNoFree AgentNoNo32025-08-07FalseFalsePro & Farm500,000$50,000$11,667$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Matt KierstedWranglers (WPG)D271998-04-14USANo182 Lbs6 ft0NoNoFree AgentNoNo42025-07-25FalseFalsePro & Farm550,000$55,000$12,833$No550,000$550,000$550,000$------550,000$550,000$550,000$------NoNoNo------Lien / Lien NHL
Nikolas MatinpaloWranglers (WPG)D271998-10-05FINYes211 Lbs6 ft3NoNoTrade2025-07-24NoNo12025-04-09FalseFalsePro & Farm500,000$50,000$11,667$No---------------------------Lien / Lien NHL
Oliver WahlstromWranglers (WPG)RW252000-06-13USANo205 Lbs6 ft2NoNoTrade2025-11-18NoNo1FalseFalsePro & Farm500,000$50,000$11,667$No---------------------------Lien / Lien NHL
Parker WotherspoonWranglers (WPG)D281997-08-24CANNo192 Lbs6 ft1NoNoFree AgentNoNo32024-09-04FalseFalsePro & Farm500,000$50,000$11,667$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Riley TufteWranglers (WPG)LW271998-04-10USANo230 Lbs6 ft6NoNoFree AgentNoNo32024-09-06FalseFalsePro & Farm500,000$50,000$11,667$No500,000$500,000$-------500,000$500,000$-------NoNo-------Lien / Lien NHL
Samuel HonzekWranglers (WPG)LW212004-11-12SVKNo186 Lbs6 ft4NoNoFree Agent2025-07-11NoNo42025-07-25FalseFalsePro & Farm550,000$55,000$12,833$No550,000$550,000$550,000$------550,000$550,000$550,000$------NoNoNo------Lien / Lien NHL
Sonny MilanoWranglers (WPG)LW291996-05-12USANo194 Lbs6 ft0NoNoN/ANoNo1FalseFalsePro & Farm500,000$50,000$11,667$No---------------------------Lien / Lien NHL
Taylor RaddyshWranglers (WPG)RW281998-02-18CANNo200 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm1,000,000$100,000$23,333$No---------------------------Lien / Lien NHL
Tyler TuckerWranglers (WPG)D252000-03-01CANNo204 Lbs6 ft1NoNoFree AgentNoNo32025-07-27FalseFalsePro & Farm850,000$85,000$19,833$No850,000$850,000$-------850,000$850,000$-------NoNo-------Lien / Lien NHL
Tyson BarrieWranglers (WPG)D341991-07-26CANNo197 Lbs5 ft11NoNoN/ANoNo1FalseFalsePro & Farm1,500,000$150,000$35,000$No---------------------------Lien / Lien NHL
Vladimir TarasenkoWranglers (WPG)RW341991-12-13RUSNo219 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm6,000,000$600,000$140,000$No---------------------------Lien / Lien NHL
Zack OstapchukWranglers (WPG)C222003-05-29CANYes212 Lbs6 ft4NoNoN/ANoNo2FalseFalsePro & Farm500,000$50,000$11,667$No500,000$--------500,000$--------No--------Lien / Lien NHL
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2626.92201 Lbs6 ft22.27918,269$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Anthony DuclairMason AppletonVladimir Tarasenko40122
2Riley TufteAatu RatyJustin Brazeau30122
3Vladimir TarasenkoConnor ZaryTaylor Raddysh20122
4Mason AppletonJohn BeecherOliver Wahlstrom10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker Wotherspoon40122
2Tyler TuckerJuuso Välimäki30122
3Nikolas MatinpaloTyson Barrie20122
4Parker Wotherspoon10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Anthony DuclairMason AppletonVladimir Tarasenko60122
2Riley TufteAatu RatyJustin Brazeau40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker Wotherspoon60122
2Tyler TuckerJuuso Välimäki40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Vladimir TarasenkoMason Appleton60122
2Aatu RatyConnor Zary40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker Wotherspoon60122
2Tyler TuckerJuuso Välimäki40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Vladimir Tarasenko60122Parker Wotherspoon60122
2Mason Appleton40122Tyler TuckerJuuso Välimäki40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Vladimir TarasenkoMason Appleton60122
2Aatu RatyConnor Zary40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Parker Wotherspoon60122
2Tyler TuckerJuuso Välimäki40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Anthony DuclairMason AppletonVladimir TarasenkoParker Wotherspoon
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Anthony DuclairMason AppletonVladimir TarasenkoParker Wotherspoon
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Cam Atkinson, Taylor Raddysh, John BeecherCam Atkinson, Taylor RaddyshJohn Beecher
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Nikolas Matinpalo, Tyson Barrie, Tyler TuckerNikolas MatinpaloTyson Barrie, Tyler Tucker
Tirs de pénalité
Vladimir Tarasenko, Mason Appleton, Aatu Raty, Connor Zary, Justin Brazeau
Gardien
#1 : Justus Annunen, #2 : Arturs Silovs


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Aces622011002223-130201000914-532000100139470.583224264101159281724387790791533173555410016318.75%21576.19%01133240447.13%1073236045.47%527118344.55%14019921633443771365
2Admirals211000001192110000009541010000024-220.5001120311011592817798779079153373181038100.00%5180.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
3Americiens32100000221482200000017891010000056-140.6672240620011592817155877907915331665512646116.67%7442.86%01133240447.13%1073236045.47%527118344.55%14019921633443771365
4Barons5210011021165311001001010021000010116570.70021375800115928172208779079153317141221027114.29%10370.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
5Barracuda521001102120131100010141312100010077070.70021385900115928172218779079153319959411197114.29%18572.22%01133240447.13%1073236045.47%527118344.55%14019921633443771365
6Broncos1010000034-1000000000001010000034-100.000369001159281741877907915334812411000%20100.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
7Bruins220000001459110000006331100000082641.00014233700115928178987790791533611616442150.00%80100.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
8Butter Knives1010000067-1000000000001010000067-100.00061218001159281767877907915333818424200.00%2150.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
9Canucks4120100020200312000001314-11000100076140.5002038581011592817189877907915331253933994125.00%15380.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
10Fighting Pandas21100000811-31010000028-61100000063320.500815230011592817838779079153374174416116.67%2150.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
11Firebirds32100000131122110000089-11100000052340.6671325380011592817113877907915331042920673266.67%10280.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
12Ice Bats53100100242132110000089-1320001001612470.700244569001159281720587790791533188642011611763.64%11463.64%01133240447.13%1073236045.47%527118344.55%14019921633443771365
13Lions522001002429-5210001001091312000001420-650.500244771001159281727487790791533252773913310330.00%14471.43%01133240447.13%1073236045.47%527118344.55%14019921633443771365
14Lynx1010000034-1000000000001010000034-100.000369001159281740877907915332613612000%3166.67%01133240447.13%1073236045.47%527118344.55%14019921633443771365
15Marlies31100100121201100000031220100100911-230.500122436001159281711187790791533131251676800.00%7185.71%01133240447.13%1073236045.47%527118344.55%14019921633443771365
16Nordiks422000001919021100000910-121100000109140.500193554001159281717787790791533210683810410220.00%13284.62%01133240447.13%1073236045.47%527118344.55%14019921633443771365
17Quacken430010002214821001000131032200000094581.0002238600011592817160877907915331383328904125.00%14471.43%01133240447.13%1073236045.47%527118344.55%14019921633443771365
18Roadrunners21100000711-4110000006421010000017-620.5007142100115928178287790791533762212404125.00%50100.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
19Tomahawks22000000844220000008440000000000041.000816240011592817648779079153395178464125.00%40100.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
20Wombats311010001419-51000100065121100000814-640.6671426400011592817112877907915331313118708112.50%9366.67%01133240447.13%1073236045.47%527118344.55%14019921633443771365
Total63302104620294273213216100321015113615311411014101431376780.6192945478413011592817272587790791533247970940513961132723.89%1804475.56%01133240447.13%1073236045.47%527118344.55%14019921633443771365
_Since Last GM Reset63302104620294273213216100321015113615311411014101431376780.6192945478413011592817272587790791533247970940513961132723.89%1804475.56%01133240447.13%1073236045.47%527118344.55%14019921633443771365
_Vs Conference4019110352018116615229802210949311810301310877314530.66318133651720115928171753877907915331551453283909732027.40%1203075.00%01133240447.13%1073236045.47%527118344.55%14019921633443771365
_Vs Division211060332092884124602110555509600121037334330.7869217026220115928178958779079153371120816844835720.00%731776.71%01133240447.13%1073236045.47%527118344.55%14019921633443771365

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
6378W129454784127252479709405139630
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
6330214620294273
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
3216103210151136
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
3114111410143137
Derniers 10 matchs
WLOTWOTL SOWSOL
811000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
1132723.89%1804475.56%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
8779079153311592817
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
1133240447.13%1073236045.47%527118344.55%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
14019921633443771365


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
24Wranglers6Barons2WSommaire du match
519Barons5Wranglers4LSommaire du match
728Barons2Wranglers4WSommaire du match
942Wranglers5Barons4WXXSommaire du match
1148Wranglers4Barracuda5LXSommaire du match
1357Quacken5Wranglers7WSommaire du match
1572Wranglers2Aces3LXSommaire du match
1779Wranglers7Canucks6WXSommaire du match
1887Canucks4Wranglers2LSommaire du match
1993Wranglers7Lions6WSommaire du match
22108Aces5Wranglers1LSommaire du match
25120Wranglers6Ice Bats4WSommaire du match
27130Barracuda5Wranglers6WSommaire du match
28136Wranglers6Quacken3WSommaire du match
31149Barracuda6Wranglers7WXXSommaire du match
34167Lions3Wranglers5WSommaire du match
37176Wranglers6Marlies7LSommaire du match
40188Marlies1Wranglers3WSommaire du match
44208Aces6Wranglers4LSommaire du match
46217Wranglers1Roadrunners7LSommaire du match
48227Wranglers5Americiens6LSommaire du match
49233Admirals5Wranglers9WSommaire du match
51248Wranglers6Butter Knives7LSommaire du match
52255Canucks6Wranglers9WSommaire du match
55271Fighting Pandas8Wranglers2LSommaire du match
57282Wranglers4Aces2WSommaire du match
59294Aces3Wranglers4WXSommaire du match
61304Wranglers2Lions6LSommaire du match
63315Wranglers6Fighting Pandas3WSommaire du match
65323Americiens4Wranglers8WSommaire du match
68338Firebirds6Wranglers2LSommaire du match
70346Wranglers3Lynx4LSommaire du match
72359Barracuda2Wranglers1LSommaire du match
74370Wranglers7Aces4WSommaire du match
76377Wranglers8Bruins2WSommaire du match
77386Bruins3Wranglers6WSommaire du match
80400Wranglers3Broncos4LSommaire du match
82411Quacken5Wranglers6WXSommaire du match
84423Ice Bats4Wranglers6WSommaire du match
85430Wranglers5Firebirds2WSommaire du match
89448Nordiks8Wranglers5LSommaire du match
92460Wranglers5Lions8LSommaire du match
94469Firebirds3Wranglers6WSommaire du match
96477Wranglers3Marlies4LXSommaire du match
98490Lions6Wranglers5LXSommaire du match
101507Wranglers5Wombats4WSommaire du match
102513Roadrunners4Wranglers6WSommaire du match
105529Wranglers3Wombats10LSommaire du match
107536Ice Bats5Wranglers2LSommaire du match
109549Wranglers6Nordiks7LSommaire du match
110557Wranglers4Ice Bats5LXSommaire du match
112564Canucks4Wranglers2LSommaire du match
114579Barons3Wranglers2LXSommaire du match
117592Wranglers4Nordiks2WSommaire du match
119600Nordiks2Wranglers4WSommaire du match
121610Wranglers3Barracuda2WSommaire du match
122620Wranglers2Admirals4LSommaire du match
124629Americiens4Wranglers9WSommaire du match
126644Wranglers6Ice Bats3WSommaire du match
128651Tomahawks1Wranglers3WSommaire du match
131665Wranglers3Quacken1WSommaire du match
132672Wombats5Wranglers6WXSommaire du match
136691Tomahawks3Wranglers5WSommaire du match
139707Wranglers-Quacken-
140714Quacken-Wranglers-
145733Butter Knives-Wranglers-
147746Wranglers-Griffins-
148756Barons-Wranglers-
151772Griffins-Wranglers-
153782Wranglers-Canucks-
Date limite d’échanges --- Les échanges ne peuvent plus se faire après la simulation de cette journée!
155788Wranglers-Tomahawks-
157798Griffins-Wranglers-
158807Wranglers-Tomahawks-
161821Butter Knives-Wranglers-
163829Wranglers-Barracuda-
166841Lynx-Wranglers-
167844Wranglers-Barons-
171863Broncos-Wranglers-
172870Wranglers-Griffins-
175882Broncos-Wranglers-
176887Wranglers-Barons-
177894Wranglers-Canucks-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
9 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
2,088,183$ 2,387,500$ 2,387,500$ 500,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
2,387,500$ 1,704,889$ 26 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 42 16,042$ 673,764$




Wranglers Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Wranglers Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Wranglers Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA